Multiple Processor Systems

Multiprocessor Systems

Local
CPU memory NN Complete system
rd M| M M] [
C C C cl Icl |cl IC C+HM| [C+M C+HM
| I
MHC H < CHM
C Inter-
memory MHC - 1CHM
C C T\
C| IC| |C]| |C)
cl [c] Ic L T T O C+M| C+M| C+M
M| M| M| [M
(@) (b) (c)

« Continuous need for faster computers
— shared memory model
— message passing multiprocessor
— wide area distributed system

Multiprocessors

Definition:
A computer system in which two or
more CPUs share full access to a
common RAM

Multiprocessor Hardware (1)

Shared memory

Private memory —~

Shared
memory

{

CPU

CPU M

Y
CPU CPU M CPU CPU M
Cache
Bus
(a) (b)

Bus-based multiprocessors

Multiprocessor Hardware (2)

Memories
o ~— o ~— o ~— o ~— 1
ol o] |=I| |=| |2] |o| |~]| |+ Crosspoint
otietitetiireti-tirrtri-t 1= switch is open
000 ——p——P—P—P C)/_\/\’<O
ol)
001 ———d———b C) O KQ
010 —O—&—p—p——o——9
o o Pany Pany o Pany o Va (b)
011 \J/ \V \V AV 74 Ay 74 \V \V \)
@ Crosspoint
o | 100 >—Pp—— 90— Pp——Pp—9 switch is closed
O /’\
101 —P—P—P— C./ S— /\’{g
>,
110 -6— >—O—O——0 kj
111 O—O—+————0—60—0
} g
Closed Open ()
sraaspoint crgss oint
switch SSP
switch

(a)

UMA Multiprocessor using a crossbar switch

Multiprocessor Hardware (3)

UMA multiprocessors using multistage switching
networks can be built from 2x2 switches

Module | Address | Opcode Value |

(2) (b)

(a) 2x2 switch (b) Message format

Multiprocessor Hardware (4)

3 Stages
A

CPUs ’) Memories
aan 1A 2A 3A 000
001 b b >~ Tood
010 T

1B 2B 3B
100 . ____—100

1C 2C 3C

—_—]

101 101
0 ; a1t
1D 2D 3D
111 3 3 111

» Omega Switching Network

Multiprocessor Hardware (5)

NUMA Multiprocessor Characteristics
1. Single address space visible to all CPUs

2. Access to remote memory via commands

- LOAD
- STORE

3. Access to remote memory slower than to local

Multiprocessor Hardware (6)

Node 0 Node 1 Node 255
CPU Memory CPU Memory CPU Memory
Directory = — =
1 I Il
TLocaI bus TLocaI bus TLocaI bus
Interconnection network
(a)
2181
Bits 8 18 6
Node Block Offset o5 F
(b) 410
3(0
]] 2|1 82
(a) 256-node directory based multiprocessor 1[0
. . 0|0
(b) Fields of 32-bit memory address il

(c) Directory at node 36

Multiprocessor OS Types (1)

CPU 1 CPU2 CPU 3 CPU 4 Memory I/O
1
Has Has Has Has Data Dita
private private private private 3 | 4
oS oS oS oS Data | Data
QS code
AN
Bus

Each CPU has its own operating system

Multiprocessor OS Types (2)

CPU 1 CPU 2 CPU 3 CPU 4 Memory l/O
Master Slave Slave Slave User
runs runs user runs user runs user processes
oS processes processes processes 0S
*®
Bus

Master-Slave multiprocessors

Multiprocessor OS Types (3)

CPU 1 CPU 2 CPU3 CPU4 Memory /0
Runs Runs Runs Runs
users and users and users and users and
shared OS| |[sharedOS| |[shared OS| |shared OS oS 0O

\ \ Locks

Bus

« Symmetric Multiprocessors
— SMP multiprocessor model

Multiprocessor Synchronization (1)

Word

CPUA 1000 is

Memory

CPU 2

initially O

\ﬁ_l

AA

\1.CPU1reads a0 /

\2. CPU2readsa0)

3.CPU 1 writes a 1

4. CPU 2 writes a 1

N

Bus

TSL instruction can fail if bus already locked

Multiprocessor Synchronization (2)

CPU 33—

3

CPU 3 spins on this (private) lock

CPU 2 spins on this (private) lock
\ / CPU 4 spins on this (private) lock

Shared memory — £

' 4

— When CPU 1 is finished with the

CPU 1 /

holds the

real lock

real lock, it releases it and also
releases the private lock CPU 2
is spinning on

Multiple locks used to avoid cache thrashing

Multiprocessor Synchronization (3)

Spinning versus Switching

 |n some cases CPU must wait
— waits to acquire ready list

* |n other cases a choice exists
— spinning wastes CPU cycles
— switching uses up CPU cycles also

— possible to make separate decision each time
locked mutex encountered

Multiprocessor Scheduling (1)

0 1 2113
4115 6|7
r'd
81191 (10] |11
12| (13| (14| |15
Priori’g/y] . . .
6 TO®
5. +®
4
g ©2C,0)
2l 1+O®
1
o TOOO®

CPU

o1(1(]2]]3
Al|5]]|6]|]|7
e
CPU 4 8| 9] 10| [11
goes idle
12| |13] [14] (15
Priority
S CC)
6| TO®
5| 4®
4
3. 600
o[O®
1
JIE o)

* Timesharing
— note use of single data structure for scheduling

(b)

CPU 12
goes idle

ol |1 2|3
All5|]|6]]|7
8191 (10] |11
Bl (13| [14| |15
Priority
10O
6| TO®
5| __1®
4
I 0 ©2G20)
o[+O®
1
o FO0®

Multiprocessor Scheduling (2)

(8] 9] |10] [11]if12] [13] |14]i|15]

6-CPU partition —.1| 16| |17] [18[i[19] |20 |21[|22]:23]

24| 25| [26|:|27| | 28| |29 |30 |31

T < -
Unassigned CPU/ 12-CPU partition

 Space sharing
— multiple threads at same time across multiple CPUs

Multiprocessor Scheduling (3)

Thread AO running
N
r R

cPUo Ao By Ao By Ag B,

E Requést 1 E equest :2 :

: | eply 1 ! Reply 2
P - A, B, A, B, A
Time 0 100 200 300 400 500 600

* Problem with communication between two threads
— both belong to process A
— both running out of phase

Multiprocessor Scheduling (4)

 Solution: Gang Scheduling
1. Groups of related threads scheduled as a unit (a gang)
2. All members of gang run simultaneously
on different timeshared CPUs
3. All gang members start and end time slices together

Multiprocessor Scheduling (5)

CPU

Gang Scheduling

Multicomputers

e Definition:

 Also known as
— cluster computers
— clusters of workstations (COWSs)

Multicomputer Hardware (1)

(m [w I
= u|
O 0
o |
O O
O ooan
@ (0) ©
: T m I
D —
o O
E D --------------------
- P
Ao 0 & TR
(d) (e) (f)

« Interconnection topologies
(a) single switch (d) double torus
(b) ring (e) cube
(c) grid (f) hypercube

Multicomputer Hardware (2)

CPU 1 Four-port Input port
switch l Output port
- A - B - A ., B & $ A ., B
S e = v i = o
e TR TRRY LER TER TER
Entire i:iC QED i:iéc HED i:ic i:i
Sl i R N [V 1 v (A = A 11
‘DI:I|:|I| DI:I|:|II ‘DI:||:|1 ------ :DI:I|:|I] ‘DI:i|:|:D """" :Di:h:ll CPU 2
I I I \ I I I \
Entire Entire
packet packet

Switching scheme
— store-and-forward packet switching

Multicomputer Hardware (3)

Node 1 Node 2
Main RAM Main RAM
= =
s | Zs
2 4
~——
Switch
Main RAM| Main RAM
I Optional f I
on- board
CPU Interface
Node 3 Interface board Node 4
board
RAM

Network interface boards in a multicomputer

Low-Level Communication Software (1)

» |f several processes running on node
— need network access to send packets ...

» Map interface board to all process that need it

e If kernel needs access to network ...

e Use two network boards
— one to user Space, one to kernel

Low-Level Communication Software (2)

Receive

Node 1 =8na rirg ring CPU Node 2

Main RAM \\ O \\ d/ Main RAM

& | =5 1| A
@ %bg Switch %y @

0s || =

/ RAM
Bit map

Interface board

Node to Network Interface Communication
» Use send & recelve rings
e coordinates main CPU with on-board CPU

User Level Communication Software

(a) Blocking send call

Sender running | Sender blocked > | Sender running

* Minimum services T e
provided concer ook Reurn rom kernel.

|«<— Message being sent —>|

— send and receive @
commands

Sender

blocked
Sender running | - >

» These are blocking W"“’“l
(synchronous) calls

Sender running

|
Return

l<

|

< > Message being sent —————>
Message

copied to a

kernel buffer

(b)

(b) Nonblocking send call

Remote Procedure Call (1)

Server CPU

Client CPU

1

_-’2

Client
stub

Operating system \

Server,
stub

4

5
TN
A |server

-

A Operating system

_/

N

Network

« Steps in making a remote procedure call

— the stubs are shaded gray

Remote Procedure Call (2)

Implementation Issues

 Cannot pass pointers
— call by reference becomes copy-restore (but might fail)

« Weakly typed languages
— client stub cannot determine size

* Not always possible to determine parameter types

 Cannot use global variables
— may get moved to remote machine

Distributed Shared Memory (1)

Machine 1 Machine 2 Machine 1 Machine 2 Machine 1 Machine 2
Application Application Application Application Application Application
|
Run-time Run-time Run-time Run-time Run-time Run-time
system system system system system system
\

Operating Operating Operating Operating Operating Operating
system system system system system system
Hardware Hardware Hardware Hardware Hardware Hardware
Shared memory Shared memory Shared memory

(a) (b) (c)

* Note layers where It can be implemented

— hardware
— operating system
— user-level software

Distributed Shared Memory (2)

Replication

(a) Pages distributed on

4 machines

(b) CPU 0 reads page
10

(c) CPU 1 reads page
10

Globally shared virtual memory consisting of 16 pages

4156|789]10]11 13|14
[
Y) Y Y
Lo][2][s]| |1 [=][e]
CPU 1 CPU 2 CPU 3
Network
(a)
Lol [2][s]] |2 [=][e]
CPU 1 CPU2 CPU 3
(b)
o [2][s]] | [=][e]
CPU 1 CPU 2 CPU 3

~<— Memory

Distributed Shared Memory (3)

CPU 1 CPU 2
L
/ ____ _ Aand B are unrelated
Shared L [A — . p \4«— | shared variables that just
page B / \:"B i happen to be on the same page
Code using Code using
variable A variable B

AN

Network

 False Sharing
« Must also achieve sequential consistency

Multicomputer Scheduling
|_oad Balancing (1)

I | I |
1 | | |
Node 1 | Node 2 | Node 3 Node 1 | Node 2 | Node 3

—~ > > > _ - > > >
| 1 Traffic | |
| I | I
A———B)—2+@) 3 (D) between A2+ @20+ ©®
| 8| D and | | 8 |
2 1 / 1 '
6| (E) & 2 4 6| (E & 5 4
I
3 I 1 3 : 1 |
1 1 1 L
(GJ 4] ®I 2 \D @/ 41 \H/ 2] \D
| I \ | I
Process

 Graph-theoretic deterministic algorithm

oad Balancing (2)

xOGe%%
3 NS >
O O

>

I’'m overloaded

 Sender-initiated distributed heuristic algorithm
— overloaded sender

Load Balancing (3)

P

/

A
t?;,@ ’
Oj/)//.?
94
%
2!
‘% y@@'
N

I'm bored
€

I'm free tonight

(b)

 Recelver-initiated distributed heuristic algorithm
— under loaded receiver

Distributed Systems (1)

ltem

Multiprocessor

Multicomputer

Distributed System

Node configuration

CPU

CPU, RAM, net interface

Complete computer

Node peripherals All shared Shared exc. maybe disk | Full set per node
Location Same rack Same room Possibly worldwide
Internode communication | Shared RAM Dedicated interconnect Traditional network
Operating systems One, shared Multiple, same Possibly all different
File systems One, shared One, shared Each node has own

Administration

One organization

One organization

Many organizations

Comparison of three kinds of multiple CPU systems

Distributed Systems (2)

Common base for applications

/

Application Application Application Application
Middleware Middleware Middleware Middleware
Windows Linux Solaris Mac OS
Pentium Pentium SPARC Macintosh
Network

Achieving uniformity with middleware

Network Hardware (1)

Computer \

Computer \ \\ //

Switch

" ~—~———

Ethernet —

Ethernet

(a) (b)

» Ethernet
(a) classic Ethernet
(b) switched Ethernet

Network Hardware (2)

Backbone High-bandwidth fiber

Regional network ~— \edium-

bandwidth

fiber Router at ISP

Dial-up line
to home PC
Fiber or Router
copper wire
\ Home PC
Local router =——> |_—|_| |_—|_| |_—|_| |%| |_—|'|<— Host

Ethernet

The Internet

Network Services and Protocols (1)

Connection-oriented <

Connectionless <)

1"

Service

Example

Reliable message stream

Sequence of pages of a book

Reliable byte stream

Remote login

Unreliable connection

Digitized voice

Unreliable datagram

MNetwork test packets

Acknowledged datagram

Registered mail

Request-reply

Database query

Network Services

Network Services and Protocols (2)

Internet \
Host Router
]
"\ Ethernet 1
Message header
L \ !
IP |TCP Message
Ethernet L ~ J

e |Internet Protocol
e Transmission Control Protocol
* |nteraction of protocols

Document-Based Middleware (1)

Hevthen Universitye

Uriuamiziyof HodhSart
School of

Humarnities

School of
Eci=nces

School of Social
Sciences

Science

Astonomy
Biology

Main page

Chemisty
Physic=

Social sciences

Anthio pology
P=yc hology

SOCIOIoTY e—

IMain page

¥ D=pt

Big courntics
Small counties
Rich countiss
Fooi counties

Humanities

History Dept.

Ancient ime s
Medieval times
Modein times
Futuie times

Humanities

Languages Dept

English
Frensh
Dutsh
Frizian
Spanish

Humanities

Astionamy Dept

Galaxies
Nebula=
Planets
Ouasai=
Stars

Scimnces

Biology Dept.

Achnids
Mammals

Sciences

Chemisty Dept.

Acids
Bazes
Esteis
Pioteins

Sciences

Phy sics Dept.

Election=
Mezons
Heutions
Heutinos
Fiotons

Eciences

Arttiopology Dept
Afican tiibes

Australian tibes
Ne=w Guinean

-

Social sciences

Psychalogy Dept.

Freud
Rats

Social sciences

Saciology Dept
Cla=s stugale

Gender shuggle
Geneiic stiuggle

Social sciences

« The Web

big directed graph of documents

Document-Based Middleware (2)

How the browser gets a page
1. Asks DNS for IP address

2. DNS replies with IP address

3. Browser makes connection

4. Sends request for specified page
5. Server sends file

6. TCP connection released

7. Browser displays text

8. Browser fetches, displays images

File System-Based Middleware (1)

1. Client fetches file

Client l Server Old file Client Server
< New file Request
(I = > | (I
4 \ Reply }
2. Accesses are 3. When client is File stays
done on the done, file is on server
client returned to server

(a) (b)

* Transfer Models
(a) upload/download model
(b) remote access model

File System-Based Middleware (2)

Naming Transparency
(b) Clients have same view of file system
(c) Alternatively, clients with different view

File System-Based Middleware (3)

Single processor

1. Write "c"

ST

2. Read gets "abc"
(@)

Semantics of File sharing

n
file

2. Write "c"

Client 1

A
/1. Read "ab"
\ File server
/
%. Read gets "ab"
Client 2

(b)

— (@) single processor gives sequential consistency
— (b) distributed system may return obsolete value

File System-Based Middleware (4)

User process

s e Root directory
¥ cache
Q cmu 1
etc 7
lib
tmp
Operating system Operating system
cp file 1 cell motd
Is file 2 cell2 | [passwd
sh file 3 cell3
A celld
Network ‘\
\ .
Symbolic o . [bin | [etc |
link S o
M

_ Client's view
* AFS — Andrew File System

— workstations grouped into cells
— note position of venus and vice

Shared Object-Based Middleware (1)

Client Client stub Skeleton N Server
P

Client \ Server
> -
code code
Object

ClientfORB__> FHEE ServerlORB_>

Operating|system Operating/system
[IOP protocol

Network

* Main elements of CORBA based system
— Common Object Request Broker Architecture

Shared Object-Based Middleware (2)

 Scaling to large systems
— replicated objects
— flexibility

* Globe

— designed to scale to a billion users
— a trillion objects around the world

Shared Object-Based Middleware (3)

Address space
/ _LClass object contains the method

List messages

»
_—
—>-| Read message
->-lAppend message
——
l

Delete message
State of mailbox 2
State of
- / mailbox 1 - /
— *O :_ - \()
e i — — —;
—;/ P -3 ’
\ -u
Interface used to \
access mailbox 1 Interface used to

access mailbox 2

Globe structured object

Shared Object-Based Middleware (4)

Class object

Computer 1 J Computer 1

F_]<«— Interface

Each computer
has a copy of ~——_

the integer (the —
object's state)

Distributed shared object

Computer 3 Computer 4

A distributed shared object in Globe
— can have lIts state copied on multiple computers at once

Shared Object-Based Middleware (5)

Computer /Object
Interface —>~[--
Control
subobject Semantics
subobject
Replication
subobject
Communication
Security A subobject
subobject
Operating system

Messages in and out go through

\ the communication subobject
-

Network/
Internal structure of a Globe object

Coordination-Based Middleware (1)

« Linda

— Independent processes

— communicate via abstract tuple space
 Tuple

— like a structure in C, record in Pascal

(ASWIIA, 12-212f6L,," ,2I6bUguA,’ ,HBOopsuY,)
(JgIX-1," 1" @' 3°1¢)
(L9pC.’ S’ ?)

1. Operations: out, In, read, eval

Coordination-Based Middleware (2)

Producer

,/ WAN
LAN O O Oé O O O
\ A
O\ @ O O @)
Consume I’/ \ Daemon \

Information router

Publish-Subscribe architecture

Coordination-Based Middleware (3)

e Jini - based on Linda model
— devices plugged into a network
— offer, use services

« Jinl Methods
1. read
2. Write
3. take
4. notify

