Multiple Processor Systems



Multiprocessor Systems
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« Continuous need for faster computers
— shared memory model
— message passing multiprocessor
— wide area distributed system



Multiprocessors

Definition:
A computer system in which two or
more CPUs share full access to a
common RAM



Multiprocessor Hardware (1)
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Bus-based multiprocessors




Multiprocessor Hardware (2)
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UMA Multiprocessor using a crossbar switch



Multiprocessor Hardware (3)

UMA multiprocessors using multistage switching
networks can be built from 2x2 switches

Module | Address | Opcode Value |

(2) (b)

(a) 2x2 switch  (b) Message format



Multiprocessor Hardware (4)
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Multiprocessor Hardware (5)

NUMA Multiprocessor Characteristics
1. Single address space visible to all CPUs

2. Access to remote memory via commands

-  LOAD
- STORE

3. Access to remote memory slower than to local



Multiprocessor Hardware (6)

Node 0 Node 1 Node 255
CPU Memory CPU Memory CPU Memory
Directory = — =
1 I Il
TLocaI bus TLocaI bus TLocaI bus
Interconnection network
(a)
2181
Bits 8 18 6
Node Block Offset o5 F
(b) 410
3(0
] ] 2|1 82
(a) 256-node directory based multiprocessor 1[0
. . 0|0
(b) Fields of 32-bit memory address il

(c) Directory at node 36



Multiprocessor OS Types (1)
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Each CPU has its own operating system




Multiprocessor OS Types (2)
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Master-Slave multiprocessors




Multiprocessor OS Types (3)
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« Symmetric Multiprocessors
— SMP multiprocessor model



Multiprocessor Synchronization (1)
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Multiprocessor Synchronization (2)

CPU 33—

3

CPU 3 spins on this (private) lock

CPU 2 spins on this (private) lock
\ / CPU 4 spins on this (private) lock

Shared memory — £

' 4

— When CPU 1 is finished with the

CPU 1 /

holds the

real lock

real lock, it releases it and also
releases the private lock CPU 2
is spinning on

Multiple locks used to avoid cache thrashing



Multiprocessor Synchronization (3)

Spinning versus Switching

 |n some cases CPU must wait
— waits to acquire ready list

* |n other cases a choice exists
— spinning wastes CPU cycles
— switching uses up CPU cycles also

— possible to make separate decision each time
locked mutex encountered



Multiprocessor Scheduling (1)

0 1 2113
4115 6|7
r'd
81191 (10] |11
12| (13| (14| |15
Priori’g/y ] . . .
6 TO®
5. +®
4
g ©2C,0)
2l 1+O®
1
o TOOO®

CPU

o1(1(]2]]3
Al|5]]|6]|]|7
e
CPU 4 8| 9] 10| [11
goes idle
12| |13] [14] (15
Priority
S CC)
6| TO®
5| 4®
4
3. 600
o[ O®
1
JIE o)

* Timesharing
— note use of single data structure for scheduling
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Multiprocessor Scheduling (2)
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 Space sharing
— multiple threads at same time across multiple CPUs



Multiprocessor Scheduling (3)
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* Problem with communication between two threads
— both belong to process A
— both running out of phase



Multiprocessor Scheduling (4)

 Solution: Gang Scheduling
1. Groups of related threads scheduled as a unit (a gang)
2. All members of gang run simultaneously
on different timeshared CPUs
3. All gang members start and end time slices together



Multiprocessor Scheduling (5)

CPU

Gang Scheduling



Multicomputers

e Definition:

 Also known as
— cluster computers
— clusters of workstations (COWSs)



Multicomputer Hardware (1)
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« Interconnection topologies
(a) single switch (d) double torus
(b) ring (e) cube
(c) grid (f) hypercube



Multicomputer Hardware (2)
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Switching scheme
— store-and-forward packet switching



Multicomputer Hardware (3)
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Network interface boards in a multicomputer



Low-Level Communication Software (1)

» |f several processes running on node
— need network access to send packets ...

» Map interface board to all process that need it

e If kernel needs access to network ...

e Use two network boards
— one to user Space, one to kernel



Low-Level Communication Software (2)
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Node to Network Interface Communication
» Use send & recelve rings
e coordinates main CPU with on-board CPU



User Level Communication Software

(a) Blocking send call
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Remote Procedure Call (1)

Server CPU

Client CPU

1

_-’2

Client
stub

Operating system \

Server,
stub

4

5
TN
A |server

-

A Operating system

_/

N

Network

« Steps in making a remote procedure call

— the stubs are shaded gray




Remote Procedure Call (2)

Implementation Issues

 Cannot pass pointers
— call by reference becomes copy-restore (but might fail)

« Weakly typed languages
— client stub cannot determine size

* Not always possible to determine parameter types

 Cannot use global variables
— may get moved to remote machine



Distributed Shared Memory (1)
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* Note layers where It can be implemented

— hardware
— operating system
— user-level software



Distributed Shared Memory (2)
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Distributed Shared Memory (3)

CPU 1 CPU 2
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 False Sharing
« Must also achieve sequential consistency



Multicomputer Scheduling
|_oad Balancing (1)
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 Graph-theoretic deterministic algorithm



oad Balancing (2)
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 Sender-initiated distributed heuristic algorithm
— overloaded sender



Load Balancing (3)
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 Recelver-initiated distributed heuristic algorithm
— under loaded receiver



Distributed Systems (1)

ltem

Multiprocessor

Multicomputer

Distributed System

Node configuration

CPU

CPU, RAM, net interface

Complete computer

Node peripherals All shared Shared exc. maybe disk | Full set per node
Location Same rack Same room Possibly worldwide
Internode communication | Shared RAM Dedicated interconnect Traditional network
Operating systems One, shared Multiple, same Possibly all different
File systems One, shared One, shared Each node has own

Administration

One organization

One organization

Many organizations

Comparison of three kinds of multiple CPU systems




Distributed Systems (2)

Common base for applications

/

Application Application Application Application
Middleware Middleware Middleware Middleware
Windows Linux Solaris Mac OS
Pentium Pentium SPARC Macintosh
Network

Achieving uniformity with middleware




Network Hardware (1)
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» Ethernet
(a) classic Ethernet
(b) switched Ethernet




Network Hardware (2)
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The Internet



Network Services and Protocols (1)

Connection-oriented <

Connectionless <)

1"

Service

Example

Reliable message stream

Sequence of pages of a book

Reliable byte stream

Remote login

Unreliable connection

Digitized voice

Unreliable datagram

MNetwork test packets

Acknowledged datagram

Registered mail

Request-reply

Database query

Network Services




Network Services and Protocols (2)

Internet \
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IP |TCP Message
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e |Internet Protocol
e Transmission Control Protocol
* |nteraction of protocols



Document-Based Middleware (1)
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« The Web

big directed graph of documents




Document-Based Middleware (2)

How the browser gets a page
1. Asks DNS for IP address

2. DNS replies with IP address

3. Browser makes connection

4. Sends request for specified page
5. Server sends file

6. TCP connection released

7. Browser displays text

8. Browser fetches, displays images



File System-Based Middleware (1)

1. Client fetches file

Client l Server Old file Client Server
< New file Request
(I = > | (I
4 \ Reply }
2. Accesses are 3. When client is File stays
done on the done, file is on server
client returned to server

(a) (b)

* Transfer Models
(a) upload/download model
(b) remote access model



File System-Based Middleware (2)

Naming Transparency
(b) Clients have same view of file system
(c) Alternatively, clients with different view




File System-Based Middleware (3)

Single processor

1. Write "c"

ST

2. Read gets "abc"
(@)

Semantics of File sharing

n
file

2. Write "c"

Client 1

A
/1. Read "ab"
\ File server
/
%. Read gets "ab"
Client 2

(b)

— (@) single processor gives sequential consistency
— (b) distributed system may return obsolete value



File System-Based Middleware (4)

User process
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_ Client's view
* AFS — Andrew File System

— workstations grouped into cells
— note position of venus and vice



Shared Object-Based Middleware (1)
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* Main elements of CORBA based system
— Common Object Request Broker Architecture



Shared Object-Based Middleware (2)

 Scaling to large systems
— replicated objects
— flexibility

* Globe

— designed to scale to a billion users
— a trillion objects around the world



Shared Object-Based Middleware (3)
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Globe structured object



Shared Object-Based Middleware (4)

Class object

Computer 1 J Computer 1

F_]<«— Interface

Each computer
has a copy of ~——_

the integer (the —
object's state)

Distributed shared object

Computer 3 Computer 4

A distributed shared object in Globe
— can have lIts state copied on multiple computers at once



Shared Object-Based Middleware (5)

Computer /Object
Interface —>~[--
Control
subobject Semantics
subobject
Replication
subobject
Communication
Security A subobject
subobject
Operating system

Messages in and out go through

\ the communication subobject
-

Network/
Internal structure of a Globe object



Coordination-Based Middleware (1)

« Linda

— Independent processes

— communicate via abstract tuple space
 Tuple

— like a structure in C, record in Pascal

(ASWIIA, 12-212f6L,," ,2I6bUguA,’ ,HBOopsuY,)
(JgIX-1," 1" @' 3°1¢)
(L9pC.’ S’ ?)

1. Operations: out, In, read, eval



Coordination-Based Middleware (2)

Producer

,/ WAN
LAN O O Oé O O O
\ A
O\ @ O O @)
Consume I’/ \ Daemon \

Information router

Publish-Subscribe architecture



Coordination-Based Middleware (3)

e Jini - based on Linda model
— devices plugged into a network
— offer, use services

« Jinl Methods
1. read
2. Write
3. take
4. notify



